CTB1000(1000A/20kHz)

AC/DC 전류 측정을 할때 개폐가 가능한 클램프형 전류센서입니다. 이 제품은 높은 정밀도, typical value 0.3%, 높은 대역폭을 가지고 있습니다. CTB104(4채널 센서 장치)와 함께 사용하면 됩니다. 퀄리티 높은 전력 분석기로 고정밀 전류 측정에서 전력 분석을 실현할 수 있습니다.



  • Bandwidth 20kHz
  • Current transfer ratio 2mV/A


  • Specfication :
    1.  Product Electronic Specification

  • f.s. Maximum display value or scale length (symbolizing the rated primary current range)
  • rdg. Reading value (symbolizing the current value under measurement, or the current value indicated by the measurement devices)
  • Proceed measurement under condition of sin wave input, central conductor position and powered by CTB104.
  • Measuring device of input resistance over 1MΩ
  • Please correctly degauss zero set before the measurement.


  • CTB1000
    Rated current AC/DC 1000A
    Bandwidth 20kHz
    Current transfer ratio 2mV/A
    Maximum input current Refer to the Current rated value vs. Frequency curve
    Accuracy Refer to the Accuracy List
    Operating temperature
    and humidity range
    -40℃~85℃,80% Below 80%RH (No dew)
    Promised accuracy range 0℃~40℃, Below 80%RH
    Temperature drift coefficient -40℃~0℃﹑40℃~85℃
    Amplitude Sensitivity: Below±0.02% rdg./℃
    Offset Voltage:≤±0.01% rdg./℃
    Diameter of measurable conductor Φ Below 50 mm
    Conductor position effect Below ±0.2% rdg.
    (Input 1000A, 50Hz/60Hz, outer diameter 30mm)
    Power supply voltage ±12V
    Power supply capacity Below ±300mA (1000A/45Hz measurement,
    power supply ±12V)


    CTB1000 Accuracy List
    Frequency Amplitude Phase
    DC ±0.3% rdg. ±0.02% f.s. -
    DC < f ≤ 100 Hz ±0.3% rdg. ±0.01% f.s. ±0.1deg.
    100Hz< f ≤ 500 Hz ±0.5% rdg. ±0.02% f.s. ±0.2deg.
    500Hz< f ≤ 1kHz ±1% rdg. ±0.02% f.s. ±0.5deg.
    1kHz< f ≤ 5kHz ±2% rdg. ±0.02% f.s. ±1.5deg.
    5kHz< f ≤ 10kHz ±5% rdg. ±0.05% f.s. ±2.0deg.
    10kHz< f ≤ 20kHz ±30% rdg. ±0.1% f.s. ±10.0deg.


    PDF Download
    PDF Download
    ===============================================================
     Debug and Analysis Considerations for Optimizing Signal Integrity =================================================================================================